September 2013

General considerations:

- The purpose of this educational material is exclusively educational, to provide practical updated knowledge for Allergy/Immunology Physicians.

- The content of this educational material does not intend to replace the clinical criteria of the physician.

- If there is any correction or suggestion to improve the quality of this educational material, it should be done directly to the author by e-mail.

- If there is any question or doubt about the content of this educational material, it should be done directly to the author by e-mail.

Juan Carlos Aldave Becerra, MD
Allergy and Clinical Immunology
Hospital Nacional Edgardo Rebagliati Martins, Lima-Peru
jucapul_84@hotmail.com

Juan Félix Aldave Pita, MD
Medical Director
September 2013 – content:

- **CONTACT DERMATITIS TO VITAMIN K1 IN AN EYE CREAM** (Lopez-Lerma I, Vilaplana J. Ann Allergy Asthma Immunol 2013; 111: 227–228).

- **IMMUNOTHERAPY FOR MOUSE BITE ANAPHYLAXIS AND ALLERGY** (Bunyavanich S, Donovan MA, Sherry JM, Diamond DV. Ann Allergy Asthma Immunol 2013; 111: 233–234).

- **TREATMENT OF PATIENTS WHO PRESENT AFTER AN EPISODE OF ANAPHYLAXIS** (Lieberman P. Ann Allergy Asthma Immunol 2013; 111: 170–175).

- **USE OF VACCINES IN THE EVALUATION OF PRESUMED IMMUNODEFICIENCY** (Ballow M. Ann Allergy Asthma Immunol 2013; 111: 163–166).

The purpose of this summary is exclusively educational, to provide practical updated knowledge for Allergy/Immunology Physicians. It does not intend to replace the clinical criteria of the physician.

- EDITOR’S CHOICE (Pediatr Allergy Immunol 2013; 24: 511).
ALLERGY:

 - **Food allergy**: increasing prevalence worldwide; **impact**: mortality, ↓ QoL; **treatment**: avoidance, epinephrine autoinjectors, immunotherapy.
 - **Food allergenicity** can be changed by **processing** (e.g. 60% of egg- or milk-allergic patients may tolerate baked egg or milk, respectively; cooking can ↑ allergenicity of **seafood**).
 - **Tree nuts**: highly nutritive food; major cause of food allergy; cross-reactivity with birch pollen (PR-10 proteins).
 - Authors performed a **systematic review** (32 articles) to assess the effects of processing on the allergenicity of tree nuts → (i) thermal processing (e.g. roasting) reduced allergenicity of PR-10 proteins in hazelnut and almond; (ii) thermal processing did not affect allergenicity of nsLTPs and seed storage proteins in hazelnut, almond, cashew nut, Brazil nut, walnut, pecan nut and pistachio nut.
 - **Author’s commentaries**: (i) patients with allergy to PR-10 proteins in hazelnut or almond may tolerate thermally-processed forms; (ii) oral food challenges (OFCs) with roasted hazelnut or almond may give false-negative results in patients with allergy to PR-10 proteins → OFCs to hazelnut and almond should be performed with raw food.

 - **Proton pump inhibitors (PPIs)**: most potent drugs for suppressing gastric acid secretion; hypersensitivity reactions are rare; several anaphylactic reactions have been reported.
 - Authors performed a prospective study in **65 patients** (22–78 yrs old) with a suggestive history of immediate hypersensitivity to PPIs → (i) suspected culprit PPI: lansoprazole (n= 52), esomeprazole (n=11), pantoprazole (n=9), rabeprazole (n=2), omeprazole (n=1); (ii) **sensitivity**, **specificity**, **NPV** and **PPV** of skin tests with PPIs = 58.8%, 100%, 70.8%, 100%, respectively.
 - **Author’s commentaries**: (i) **skin testing** may help in the diagnosis of immediate hypersensitivity to PPIs; (ii) **skin testing** may help to evaluate cross-reactivity among PPIs; (iii) **oral drug challenges** to PPIs should be performed in patients with negative skin tests.
 - **Solutions for skin prick tests**: (i) smashed oral preparations (omeprazole capsule 20 mg, lansoprazole capsule 30 mg, pantoprazole tablet 40 mg, rabeprazole tablet 20 mg, esomeprazole tablet 20 mg) diluted in 1 ml of 0.9% NaCl; (ii) 1/10 and 1/1 dilutions of **injectable preparations** (omeprazole 4 mg/ml, pantoprazole 4 mg/ml, esomeprazole 8 mg/ml).
 - **Solutions for intradermal tests**: 1/1000, 1/100 and 1/10 dilutions of **injectable preparations** (omeprazole 4 mg/ml, pantoprazole 4 mg/ml, esomeprazole 8 mg/ml).
• **Oral drug challenges** (increasing doses at 30-min intervals): (i) omeprazole capsule: 5, 10, 20 mg; (ii) lansoprazole capsule: 7.5, 15, 30 mg; (iii) pantoprazole tablet: 5, 10, 20 mg; (iv) rabeprazole tablet: 5, 10, 20 mg; (v) esomeprazole tablet: 5, 10, 20 mg.

 • **Atopic eczema (AE):** common chronic skin disease (3% of adults, 20% of children); impact: ↓ QoL, ↑ predisposition to skin infections (bacterial, viral) and other allergies (asthma, allergic rhinitis).

 • **Pathogenic factors for AE:** (i) skin barrier defects: scratching, ↓ synthesis of epidermal proteins (e.g. filaggrin, loricrin, involucrin, corneodesmosin, S100 proteins, proteases, antiproteases [e.g. LEKTI], tight junction proteins [e.g. claudin-1]) due to genetic mutations or TH2-cytokine influence → increased entry of allergens through skin.

 • (ii) innate immune dysregulation: ↑ inflammatory dendritic cells, altered TLR signalling, ↓ production of antimicrobial peptides (e.g. cathelicidin, defensins), ↑ keratinocyte production of cytokines that promote TH2 environment (e.g. TSLP, IL-25, IL-33).

 • (iii) adaptive immune dysregulation (determined by genetic factors [e.g. polymorphisms in IL4RA] and environmental factors [e.g. Staphylococcal superantigens, low vit D]): ↑ TH2 inflammation (IL-4, IL-13, IL-5, IgE, IL-31 → promote skin barrier dysfunction and pruritus), ↑ TH17 inflammation (promotes acanthosis), altered TH1 responses (predisposition to viral and bacterial infections), altered TH17 responses (predisposition to bacterial and fungal infections), ↓ Treg responses.

 • (iv) exaggerated immune responses to food allergens (e.g. milk, egg), aeroallergens (e.g. house dust mites), microbial molecules (e.g. from S aureus or Malassezia sp) or self antigens (e.g. human thioredoxin).

 • (v) abnormal skin colonization by microbes: *S aureus* colonizes the skin in 90% of AE patients (staphylococcal enterotoxins induce polyclonal T-cell and B-cell activation).

 • Several pathogenic factors are probably combined and may result in varied clinical phenotypes.

 • Filaggrin: important role in the integrity of skin barrier; expressed by keratinocytes; not expressed by nasal, bronchial or esophageal epithelium; loss-of-function genetic mutations occur in 30% of AE patients (however, 8% of healthy subjects also carry those mutations).

 • **Asthma:** high prevalence worldwide (20% of children, 10% of adults); mainstay of treatment: inhaled corticosteroids, inhaled β2-agonists. Many patients do not respond to standard therapy → new therapeutic options are needed.

 • **Macrolides:** (i) antibacterial action (including against *Mycoplasma pneumoniae* and *Chlamydia pneumoniae*); (ii) immunomodulatory/antiinflammatory effects (e.g. ↓ IL-8).
• Previous studies and case reports have shown beneficial effects of macrolides in chronic inflammatory lung diseases (e.g. asthma, COPD, bronchiectasis, cystic fibrosis, diffuse panbronchiolitis, post-transplant bronchiolitis obliterans).

• Authors performed a metaanalysis (12 RCT) to assess the effects of prolonged macrolide treatment (≥3 wks) in patients (children and adults) with asthma → (i) no effect on FEV1 (8 RCT, 381 subjects); (ii) significant ↑ in PEF (4 RCT, 419 subjects); (iii) significant improvements in symptom scores (8 RCT, 478 subjects), airway hyper-reactivity (2 RCT, 131 subjects) and QoL (5 RCT, 346 subjects).

• Author’s commentaries: (i) macrolides may be beneficial as an adjunct asthma therapy, particularly in certain phenotypes (e.g. noneosinophilic or neutrophilic asthma); (ii) consider the risk of increasing bacterial resistance to macrolides.

• MANY WAYS LEAD TO ROME: A GLANCE AT THE MULTIPLE IMMUNOLOGICAL PATHWAYS UNDERLYING ATOPIC DERMATITIS (Bieber T. Allergy 2013; 68: 957-958):

 • Atopic dermatitis (AD) cannot simply be qualified as a TH2 disease.

 • Multiple pathogenic factors in AD (genetic, epigenetic, environmental): (i) skin barrier defects, (ii) innate immune dysregulation, (iii) adaptive immune dysregulation, (iv) exaggerated immune responses to self and non-self antigens, (v) abnormal skin colonization by microbes.

 • Several pathogenic factors are probably combined and may result in varied clinical phenotypes.

 • ‘Futuristic’ therapy of AD: determine specific AD phenotypes using clinical, laboratory, histologic and genetic biomarkers → individualize therapy.

 • Authors present the history of the naissance and evolution of the term ‘allergy’.

 • Clemens von Pirquet used for the 1st time the term ‘allergy’ in 1906 (from the Greek allos [‘other or different’] and ergia [‘energy or action’], in the sense of ‘change in reactivity of the immune system after the 1st encounter with an antigen’) → at that time the term ‘allergy’ included both protective immunity and hypersensitivity reactions.

 • Currently, the term ‘allergy’ is limited to describe only hypersensitivity conditions.

 • In the general population the term ‘allergy’ is also used as synonymous of antipathy or rejection.

• UTILIZING METABOLOMICS TO DISTINGUISH ASTHMA PHENOTYPES: STRATEGIES AND CLINICAL IMPLICATIONS (Reisdorph N, Wechsler ME. Allergy 2013; 68: 959–962):

 • Futuristic approach in asthma: use of biomarkers to identify specific asthma phenotypes → give individualized therapy (e.g. leukotriene-induced asthma → give antileukotrienes).

 • Diagnostic tools to precisely distinguish asthma phenotypes are lacking.

 • Metabolomics: study of chemical processes involving metabolites; valuable tool to discover biomarkers and to elucidate mechanisms of disease (e.g. metabolomic analysis of exhaled breath concentrate [EBC], BALF, serum or urine in patients with asthma).
The purpose of this summary is exclusively educational, to provide practical updated knowledge for Allergy/Immunology Physicians. It does not intend to replace the clinical criteria of the physician.

- **Ibrahim et al** (Allergy 2013; 68: 1050–1056): metabolomic analysis (using nuclear magnetic resonance spectroscopy) of EBC samples could: (i) discriminate asthmatic adults from nonasthmatic adults; (ii) distinguish sputum neutrophilia and use of inhaled corticosteroids; (iii) not distinguish eosinophilia and asthma control.

 - Influence of serum vit D levels and vit D supplementation on the development of allergic diseases during childhood is controversial.
 - Gold standard to diagnose food allergy: oral food challenge.
 - Vit D deficiency in pregnancy has been strongly associated with low birth weight.

- **A CASE OF ANAPHYLAXIS TO ERYTHRITOL DIAGNOSED BY CD203c EXPRESSION-BASED BASOPHIL ACTIVATION TEST** (Sugiura S, Kondo Y, Ito K, Hashiguchi A, Takeuchi M, Koyama N. Ann Allergy Asthma Immunol 2013; 111: 222–223):
 - Food or drug additives occasionally cause allergic reactions.
 - Erythritol (a sugar alcohol): widely used food and drug sweetener (sweet, low calorie content, chemical inert, nontoxic); adverse reactions are rare (4 previous reports of allergic reactions).
 - PAL SWEET Calorie Zero (PSCZ): artificial sweetener containing 99% erythritol.
 - Authors report the case of an 8-yr-old girl with recurrent anaphylaxis to erythritol (as an ingredient of snacks, chewing gum, milk and milk tea containing PSCZ) → diagnosis: negative serum specific IgE to 82 types of food, latex and gelatin; positive oral food challenge to PSCZ; positive skin prick test to PSCZ (100 mg/mL dissolved in normal saline); positive basophil activation test with erythritol (concentration-dependent manner; basophil activation was reduced when surface IgE was removed).
 - Author’s commentaries: (i) allergy to food additives should be considered when a patient has reacted to several ‘non-related’ foods; (ii) BAT with food additives could be a useful diagnostic test, even if the detection of specific IgE antibodies is not feasible.

 - Asthma: chronic respiratory disease (airway inflammation, bronchial hyperreactivity, reversible airway obstruction, variable remodeling); typical symptoms: cough, wheezing, breathlessness, chest tightness; atypical presentations can occur (e.g. cough variant asthma [only chronic cough]).
 - Authors report 24 patients (10 men, 14 women, mean age=34.5 yrs) with ‘chest tightness variant asthma (CTVA)’: (i) recurrent chest tightness was the only symptom; (ii) no cough or wheezing on auscultation; (iii) no alternative causes of chest tightness (e.g. cardiac disease, inhalation of toxic substances, hematologic disease, hyperthyroidism, neurological disease, myopathy); (iv) abnormal lung function tests (18 patients had positive methacholine test and PEF variability, 6 patients had reversible airflow limitation after bronchodilator inhalation); (v)
histological findings consistent with asthma (in 6 patients who agreed bronchoscopy with biopsy); (vi) good response to either ICS or ICS+LABA.

- **Author’s commentary:** asthma should be considered in patients with recurrent chest tightness as their sole complaint in the absence of other recognized diseases.

ONTACT DERMATITIS TO VITAMIN K1 IN AN EYE CREAM (Lopez-Lerma I, Vilaplana J. Ann Allergy Asthma Immunol 2013; 111: 227–228):

- **Eyelid allergic contact dermatitis:** frequently caused by cosmetic ingredients (dyes, fragrances, resins, preservatives, vehicles) applied on the face, hair or fingernails.

- **Uses of vit K1 (phytonadione):** (i) **systemic use:** bleeding prophylaxis in patients with hypoprothrombinemia, antidote to warfarin (coumadin); (ii) **topical use:** cosmetics to improve skin lightening, dark eyed circles, bruising, spider veins, varicose veins, actinic purpura, traumatic purpura.

- Authors report the case of a 23-yr-old woman with eyelid eczema after a 2-month use of an antiwrinkle eye cream containing vit K1 → diagnosis: positive patch test to vit K1 (all cream ingredients were tested, including urea, ubiquinone, parabens, fragrance and other additives; 20 healthy controls did not react to vit K1 patch testing) → successful treatment: topical steroids, cream withdrawal.

- **FEF25-75** (mid-expiratory flow between 25% and 75% of forced vital capacity) is more reflective of small airways than FEV1 (forced expiratory volume in the 1st second).

- Impaired FEF25-75 (<65% of predicted) may suggest: (i) affection of small airways (including the ‘small airways asthma phenotype’); (ii) early bronchial affection in patients with recent onset of allergic rhinitis; (iii) severe bronchial hyperreactivity in patients with asthma or rhinitis; (iv) positive response to bronchodilation test in patients with asthma; (v) bronchial inflammation as assessed by FeNO measurement; (vi) significant association with adiposity, (vii) significant association with breathlessness perception in children with asthma, (viii) significant association with symptom duration and sensitization to perennial allergens in patients with rhinitis; (ix) significant association with asthma control.

- **Author’s commentary:** do not underestimate an impaired FEF25-75, even in patients with normal FEV1.

IMMUNOTHERAPY FOR MOUSE BITE ANAPHYLAXIS AND ALLERGY (Bunyavanich S, Donovan MA, Sherry JM, Diamond DV. Ann Allergy Asthma Immunol 2013; 111: 233–234):

- **Allergy to laboratory animals:** affects 11-44% of laboratory animal workers; mainly allergic rhinoconjunctivitis and asthma; treatment: avoidance, use of protective gear.

- **Allergy to mice:** 3 main allergens (Mus m 1, Mus m 2, albumin), variably present in mouse hair, dander, urine and serum.

- Authors report the case of a 55 yr-old laboratory worker (personal history of rhinitis while working with mice; financially dependent on this employment) with anaphylaxis (urticaria,
The purpose of this summary is exclusively educational, to provide practical updated knowledge for Allergy/Immunology Physicians. It does not intend to replace the clinical criteria of the physician.

angioedema, chest and throat tightness, dizziness, mild hypotension [94/59 mmHg]) minutes after a bite (on his 3rd digit) of a laboratory mouse → diagnosis confirmation (6 wks after the reaction): positive SPT for mouse epithelium, ↑ serum sIgE for mouse epithelium (6.17 kU/L) and mouse urinary protein (0.41 kU/L) → treatment: subcutaneous immunotherapy with mouse antigen (change of employment was not possible) → rhinitis symptoms resolved 14 months after initiation of immunotherapy, patient has not been bitten again.

• Author’s commentary: immunotherapy to occupational allergens should be considered in high-risk patients who cannot avoid exposure.

• LIPID MEDIATORS AND ALLERGIC DISEASES (Fanning LB, Boyce JA. Ann Allergy Asthma Immunol 2013; 111: 155–162):

 • Lipid mediators (e.g. prostaglandins [PG], leukotrienes [LT], thromboxanes [TX], lipoxins [LX]): bioactive molecules generated from cell membrane phospholipids; clinical significance: (i) important roles in physiologic and pathologic cell processes, including inflammatory/immune responses (e.g. proallergic effects of LT, PGD2 and TXA2; antiallergic effects of PGE2 and PG12); (ii) diagnostic markers of disease (e.g. urinary LTE4, urinary TXA2, LT in exhaled breath concentrate); (iii) therapeutic targets (e.g. cysteinyl LT receptor type 1 [CysLT1R] antagonists, 5-lipoxygenase inhibitors, CRTH2 [PGD2 receptor] antagonists, TX receptor antagonists, EP [PGE2 receptors] agonists).

 • Synthesis of lipid mediators: (1) phospholipase A2 release arachidonic acid from membrane phospholipids → (2) arachidonic acid is oxidatively metabolized → (3) cyclooxygenase pathway converts arachidonic acid into PG and TX; lipoxygenase pathway converts arachidonic acid into LT and LX.

 • COX inhibition generally results in increased allergic inflammation.

 • In vivo and in vitro studies suggest that signalling through CysLT2R inhibits CysLT1R expression and function.

 • LTB4 is strongly chemotactic for neutrophils and eosinophils.

• TREATMENT OF PATIENTS WHO PRESENT AFTER AN EPISODE OF ANAPHYLAXIS (Lieberman P. Ann Allergy Asthma Immunol 2013; 111: 170–175):

 • Anaphylaxis: severe allergic reaction due to the liberation of mast cell and basophil mediators.

 • Allergists/immunologists must know: (i) how to treat acute anaphylaxis (may occur after immunotherapy application, skin testing or food/drug challenges); (ii) how to evaluate and manage a patient with a suspected history of anaphylaxis (confirm diagnosis, determine the etiology, give a treatment plan to prevent and treat further episodes).

 • Approach to a patient with a history of anaphylaxis: (i) evaluate all potential triggers (e.g. food, drugs, insect stings, exercise [or food + exercise], temperature changes, menstruation) within 6 hrs before symptom onset (idiopathic anaphylaxis can account for 60% of adult cases); (ii) take a thorough history of all signs and symptoms (place and time of onset, duration, recurrence, response to treatment); (iii) exclude differential diagnosis (e.g. mastocytosis, mast cell activation disorder, carcinoid syndrome, neuroendocrine tumors, drug-induced flush [niacin, nicotine, ACE inhibitors, corticosteroids, cathecolamines], alcohol related flush [alone or
in combination with drugs such as disulfiram, griseofulvin or cephalosporins], acute coronary syndrome, pulmonary embolism, postprandial syndromes [ingestion of monosodium glutamate or sulfites, scombroidosis], hereditary angioedema, vocal cord dysfunction syndrome, panic attack, somatoform disorder; (iv) perform proper laboratory tests (serum tryptase, plasma histamine, urinary histamine metabolites, serum PAF, serum PGD2, in vivo and in vitro allergy tests, oral challenges, tests to exclude differential diagnosis [e.g. imaging studies if suspicion of neuroendocrine tumors, neuropeptide levels if suspicion of carcinoid syndrome, bone marrow biopsy if suspicion of mastocytosis]); (v) give detailed written indications to prevent and quickly-treat further anaphylaxis episodes (e.g. trigger avoidance, use of identification, use of autoinjectable epinephrine [2 injections are needed in up to 30% of episodes], quickly assume recumbent position with feet elevated until complete CV recovery, avoidance of some drugs [β-blockers can ↓ epinephrine action; ACE inhibitors can ↓ angiotensin effect and ↑ bradykinin levels, MAO inhibitors can interfere with epinephrine effect]).

- **NIAID/FAAN criteria to diagnose anaphylaxis** → sensitivity=96.7%, specificity=82.4%.
- **Anaphylaxis** can present without cutaneous signs (urticaria or angioedema) in >20% of patients.
- Median times to cardiovascular and/or respiratory collapse during anaphylaxis: (i) 10 min for iatrogenic events, (ii) 15 minutes for field insect stings, (iii) 30 minutes for food.

USE OF VACCINES IN THE EVALUATION OF PRESUMED IMMUNODEFICIENCY (Ballow M. Ann Allergy Asthma Immunol 2013; 111: 163–166):

- Assessment of antibody responses is very important in the evaluation of patients with suspected primary immunodeficiency (PID).
- **Importance of evaluating antibody responses:** (i) to diagnose specific antibody deficiency; (ii) to diagnose common variable immunodeficiency; (iii) to indicate replacement therapy with immunoglobulin.
- In 2012 a working group of the AAAAI published a must-read report about the use of vaccine responses in the evaluation of patients with suspected PID (J Allergy Clin Immunol 2012; 130 (suppl): S1-S24).
- **Common vaccines currently used to measure antibody responses:** (i) T-cell dependent: Haemophilus influenzae type b conjugate, meningococcal conjugate, pneumococcal conjugate (e.g. Prevnar 13), rabies, tetanus; (ii) T-cell independent: meningococcal polysaccharide, pneumococcal polysaccharide (e.g. Pneumovax 23).
- **How to assess antibody response in patients who are already using immunoglobulin replacement therapy?** (i) stop immunoglobulin for some months and then assess antibody responses (sometimes it is not feasible because of patient’s risk); (ii) use novel vaccines or neoantigen vaccines (e.g. meningococcal vaccines, rabies vaccine, tickborne encephalitis virus vaccine, bacteriophage ΦX174).
- **Important points of vaccine use in patients with confirmed or suspected PID:** (i) live viral vaccines should be avoided in patients with severe PIDs; (ii) patients with severe PIDs do not need vaccine challenges to confirm defective immunity (little additional value); (iii) unconjugated polysaccharide vaccines should not be used for the routine investigation of antibody deficiency in children <18 months of age; (iv) immediate repeat booster with unconjugated polysaccharide
The purpose of this summary is exclusively educational, to provide practical updated knowledge for Allergy/Immunology Physicians. It does not intend to replace the clinical criteria of the physician.

Vaccines is not recommended and might promote hyporesponsiveness; (v) protective response to each pneumococcal polysaccharide serotype = antibody titer ≥1.3 mg/mL; (vi) for those serotypes with a prevaccine antibody titer ≥1.3 mg/mL, a 2-fold response is considered an adequate response; (vii) normal response to unconjugated pneumococcal polysaccharide vaccine in children between 2 and 5 yrs of age = conversion of ≥50% of the serotypes tested and/or ≥2-fold increase in titer for those serotypes already ≥1.3 mg/mL at baseline; (viii) normal response to unconjugated pneumococcal polysaccharide vaccine in subjects between 6 and 65 yrs of age = conversion of ≥70% of the serotypes tested and/or ≥2-fold increase in baseline titers; (ix) specific antibody deficiency = deficient response to pneumococcal polysaccharide vaccine + normal responses to protein or conjugate vaccines + normal serum immunoglobulin levels (some patients may have ↓ serum IgG subclass levels).

 • Recognition of Candida by innate immune cells → phagocytosis, secretion of TH17-inducing cytokines (IL-6, IL-23, IL-18), antigen presentation to naive T cells → differentiation of Candida-specific TH17 cells → secretion of TH17 cytokines (e.g. IL-17A, IL-17F, IL-22) → attraction of neutrophils, synthesis of antimicrobial peptides → elimination of Candida.
 • Genetic defects in TH17 immunity (e.g. IL-17F deficiency, IL17RA deficiency, STAT3 deficiency, STAT1 gain-of-function mutations, APECED, CARD9 deficiency) → recurrent infections with Candida albicans → chronic mucocutaneous candidiasis (CMC).
 • Authors report the case of a 59-yr-old woman with isolated CMC (for >33 yrs) → genetic analysis: heterozygous G821A mutation in the coiled-coil domain of STAT1 → successful treatment: intravenous GM-CSF (leucomax) 800 µg twice a week for 3 yrs (rapid complete clinical remission, ↑ monocyte and neutrophil functions), then switched to subcutaneous G-CSF (filgrastim) 400 µg (5 µg/kg) twice a week for the last 16 yrs (keeping WBC ≤15,000/mm³ with 80-90% granulocytes) → suspension of G-CSF was attempted but CMC recurred within 4 wks → resumption of G-CSF resulted in complete clinical remission within 2 wks.
 • Effects of G-CSF therapy in the patient: (i) ↑ proportion of TH17 cells; (ii) ↑ production of TH-17 cytokines (e.g. IL-17A, IL-17F, IL-22, IL-6); (iii) ↑ expression and phosphorylation of STAT3; (iv) ↑ expression of SOCS 1 (which inhibits STAT1).
 • Hypothesis: G-CSF → ↑ production of IL-6 → ↑ expression of STAT3, ↓ expression of STAT1 → ↑ TH17 cell development.
 • Author’s commentaries: (i) G-CSF therapy may achieve complete clinical remission in patients with isolated CMC due to STAT1 gain-of-function mutations; (ii) G-CSF therapy may benefit patients with other genetic defects causing isolated CMC.

• DEVELOPMENT OF A VALIDATED BLOOD TEST FOR NICKEL SENSITIZATION (Pacheco K, Barker L, Maier L, Erb S, Sills M, Knight V. J Allergy Clin Immunol 2013; 132: 767-769):
 • Reasons for joint implant failure: delayed allergy to metals, infection, biomechanical mismatch.
 • Diagnosis of delayed allergy to metals: patch test (gold standard), lymphocyte proliferation test (non validated method).
• Authors report the development and validation of a blood lymphocyte proliferation test to diagnose nickel sensitization → sensitivity: 68%, specificity: 98%, PPV: 93%, NPV: 90% (compared to patch test).

 - Urticarial vasculitis (UV): (i) Clinical manifestations: urticarial rash (individual lesions last >24 hrs, may cause burning/pain rather than pruritus, often resolve with hyperpigmentation or purpura); systemic involvement (e.g. joints, respiratory tract, GI tract, kidneys) can be found, especially in hypocomplementemtic UV patients. (ii) Histology: findings of leukocytoclastic vasculitis. (iii) Etiology: unclear in most cases (may associate with connective tissue disorders, drugs, infections, hematologic disorders). (iv) Pathophysiology: autoinflammatory/autoimmune disease, IL-1 may have an important pathogenic role. (v) Treatment: not standardized (based mainly on case reports), depends on severity; includes antihistamines, NSAIDs, colchicine, immunomodulators (hydroxychloroquine, dapsone), immunosuppressives (corticosteroids, cyclosporine A, azathioprine, cyclophosphamide, methotrexate), anakinra (IL-1R antagonist), anti-IL6 mAb.
 - Authors report an open-label pilot study in 10 patients with active UV (only 1 with hypocomplementemic UV) who were treated with a single dose (300 mg subcutaneously) of canakinumab (long-acting fully humanized anti–IL-1β mAb) → (i) ↓ mean total UV activity score; (ii) ↓ global disease activity (physician-based and patient-reported); (iii) ↓ inflammatory markers (CRP and ESR); (iv) ↓ serum IL-6 levels; (v) ↑ QoL; (vi) complete clinical and laboratory remission in 2 of 10 patients; (vii) no serious adverse effects.
 - Author's commentaries: (i) canakinumab may be an effective and safe therapy for patients with UV; (ii) larger studies are required, especially in patients with hypocomplementemtic UV.

• LONG-TERM FOLLOW-UP OF ORAL IMMUNOTHERAPY FOR COW'S MILK ALLERGY (Keet CA, Seopaul S, Knorr S, Nairsety S, Skripak J, Wood RA. J Allergy Clin Immunol 2013; 132: 737-739):
 - Food allergy: increasing prevalence worldwide, high economic and health impact; conventional treatment: avoidance (does not prevent accidental exposure), epinephrine autoinjectors, follow-up (to assess for spontaneous resolution).
 - Oral immunotherapy (OIT) for food allergy is under active investigation; potential benefits: long-lasting acquisition of tolerance, ↑ QoL, ↓ danger of accidental food exposure; limitations: severe allergic reactions during treatment, potential lack of efficacy (short- or long-term).
 - Authors report the follow-up (3 to 5 yrs after treatment) of 32 children who received cow milk [CM] OIT (from 2 well-designed trials) → (i) only 31% of subjects were tolerating full servings of CM with minimal or no symptoms; (ii) 19% of subjects reported anaphylaxis in recent follow-up; (iii) 22% of patients limited CM consumption because of symptoms, 9% because of symptoms, 13% because of taste; (iv) some subjects with initial successful OIT reported recurrence of symptoms over time (1 subject reported epinephrine use at least twice per month) → long-term outcomes after CM OIT were mixed, some subjects lost desensitization over time.
Author’s commentaries: (i) OIT for food allergy is far from ready for clinical practice; (ii) more research into the long-term outcomes of OIT for food allergy is necessary.

Severe combined immunodeficiency (SCID): genetic defects causing near-absence of T cells → marked failure of cellular and humoral immune responses → severe infections (including opportunistic), fatal course if not treated (HSCT or gene therapy).

X-linked SCID (X-SCID): most frequent SCID (44-46%); etiology: IL2RG gene mutations → deficient common gamma chain → deficient signalling of IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21 → markedly ↓ production of T and NK lymphocytes.

Authors report the case of a 9-month-old boy with X-SCID → genetic mutation: p.R226C (IL2RG gene) → massively parallel sequencing: maternal somatic IL2RG mosaicism (frequencies for the mutated allele oscillating from 7.7% to 20.2%); no mutation in the patient’s maternal grandparents (supporting the de novo nature of the mother’s somatic mosaicism) → successful treatment: HLA-matched unrelated HSCT (37 wks of follow-up).

Author’s commentaries: (i) Somatic mosaicism can play a role in the pathogenesis of PIDs (e.g. ALPS, NOMID, X-SCID); (ii) 13-56% of X-SCID patients are diagnosed with ‘de novo’ IL2RG mutations (some of them could actually be a consequence of unidentified maternal mosaicism) (ii) mosaicism detection is important for genetic counseling (de novo mutation → virtually zero risk of affected siblings) (mosaicism detection → potential risk of affected siblings).

NATURAL KILLER CELL DEFICIENCY (Orange J. J Allergy Clin Immunol 2013; 132: 515-525):

Functions of NK cells: (i) direct cytotoxicity; (ii) secretion of protective cytokines (e.g. IFN-γ); (iii) immune regulation.

Defects in NK cells may occur: (i) as part of broader genetic immune defects (e.g. X-linked SCID, ADA-SCID, reticular dysgenesis); (ii) as the major immune defect (‘NK cell deficiency’).

At least 46 known single-gene PIDs include an NK cell defect.

NK cell deficiency (NKD): (i) classic NKD subtype 1 (GATA2 defect, autosomal dominant inheritance): ↓ CD56dim NK cell numbers, ↓ CD56bright NK cell numbers, ↓ NK cell function, susceptibility to VZV, HSV, CMV, HPV and mycobacteria; (ii) classic NKD subtype 2 (MCM4 defect, autosomal recessive inheritance): ↓ CD56dim NK cell numbers, normal CD56bright NK cell numbers, ↓ NK cell function; (iii) functional NKD subtype 1 (FCGR3A defect, autosomal recessive inheritance): normal NK cell numbers, ↓ NK cell function.

Features of NKD: (i) NK cell deficiency represents the major immunologic abnormality; (ii) defect is stable over time; (iii) secondary causes are excluded (e.g. drugs, malignancy, HIV infection, severe physiologic or emotional stress); (iv) broader PIDs that include an NK cell defect are excluded; (v) NK cells are evaluated as CD3-/CD56+ cells; (vi) in patients with classical NKD, NK cells are ≤1% of peripheral blood lymphocytes; (vii) abnormal functional evaluations are repeatable.
• **NATURAL KILLER CELLS IN PATIENTS WITH ALLERGIC DISEASES** (Deniz G, van de Veen W, Akdis M. J Allergy Clin Immunol 2013; 132: 527-535):

 • **NK cells:** (i) kill tumor cells or virus-infected cells; (ii) regulate the function of other immune cells through cytokine/chemokine secretion or cell-cell contact; (iii) 4 subtypes: NK1 cells (favor TH1 immunity), NK2 cells (favor TH2 immunity), regulatory NK cells (regulate immune responses), NK22 cells (protect epithelial cell barriers?); (iv) important roles in viral infection, cancer, autoimmunity, transplantation and pregnancy; (v) role in allergic diseases is not well defined.

 • NK cells respond to several chemoattractants (e.g. CXCL12-CXCR4 chemokine signaling).

• **THE EDITOR’S CHOICE** (Leung DYM, Szefler SJ. J Allergy Clin Immunol 2013; 132: 545-546):

 • **Asthma** may represent a collection of diseases with similar clinical manifestations.

 • 2 subphenotypes of children with persistent wheeze: (i) persistent troublesome wheeze: major airway obstruction and hyperreactivity, high atopy levels, high rates of severe exacerbations and health care use; (ii) persistent controlled wheeze: lower rates of severe exacerbations.

 • Predictors of subsequent troublesome symptoms among 3-yr-old wheezers: large skin test responses, history of previous exacerbations, ↓ lung function, eczema.

 • Tetratricopeptide repeat domain 7A (TTC7A) deficiency → combined immunodeficiency (intrinsic defect of T cells or defect of the thymic stroma?) with multiple intestinal atresias (small bowel, large bowel or both).

 • TTC7A is abundantly expressed in a subset of thymic epithelial cells and, to a lower extent, in thymocytes.

 • Currently, there is no effective specific therapy for severe immune reactions mediated by cytotoxic T lymphocytes (e.g. SJS/TEN, GVHD).

 • Wang et al (J Allergy Clin Immunol. 2013; 132: 713-722) developed a nucleic acid–based molecule (using siRNA) to specifically target cytotoxic T lymphocytes → ↓ cytotoxicity in the in vitro models of SJS/TEN and GVHD; advantages: specificity, low immunogenicity, low toxicity.

 • Natural birth delivery, breastfeeding, ↑ sibship size → promotion of beneficial microbiota (e.g. ↓ clostridia) → ↓ risk of allergy.

 • Proteases regulate WASP–driven F-actin assembly.

 • WASP activation (phosphorylation following TCR signalling) is essential for F-actin assembly and T-cell function; WASP regulation (ubiquitination, degradation by proteases) is essential to prevent pathologic excessive F-actin assembly.

• **ALLERGIC REACTIONS TO VACCINES** (Wood RA. Pediatr Allergy Immunol 2013; 24: 521–526):

 • Vaccines: ↓ morbidity and mortality of many infectious diseases (eg. eradication of smallpox).
The purpose of this summary is exclusively educational, to provide practical updated knowledge for Allergy/Immunology Physicians. It does not intend to replace the clinical criteria of the physician.

- **Adverse reactions to vaccines:** (i) **immediate allergy** (minutes to hours): IgE-mediated; (ii) **delayed allergy** (hours to days): usually not IgE-mediated (e.g. serum sickness, polyarthritis, erythema nodosum); (iii) **non immunologic**.

- **Immediate hypersensitivity to vaccines** range from 1 per 50,000 doses for DTP to about 1 per 500,000–1,000,000 doses for most other vaccines.

- **Anaphylaxis to vaccines:** rare but possible (reported for nearly every vaccine); most often due to vaccine constituents (e.g. gelatin, egg, milk, chicken, preservatives, antibiotics, yeast, latex) rather than the microbial components; in many cases the specific culprit is not detected.

- **Important considerations regarding adverse reactions to vaccines:** (i) **confirm the adverse reaction** (fever and local reactions are very common, generally self-limited, and usually do not contraindicate further doses); (ii) evaluate if the patient needs further doses of the culprit vaccine or similar vaccines (some patients mount adequate immune responses after fewer than the recommended vaccine doses); (iii) if the clinical history suggests an IgE-mediated reaction, perform *in vivo* and *in vitro* tests to detect specific IgE (sIgE) against the vaccine or its components; (iv) patients with **negative vaccine skin tests** will usually tolerate the vaccine; (v) patients with **positive vaccine skin tests** might tolerate the vaccine (if benefits outweigh risk the vaccine should be administered gradually); (vi) it is prudent to **observe** the patient 30 min after vaccination; (vii) it is prudent to be prepared for **anaphylaxis**; (viii) if an IgE-mediated reaction to the vaccine is confirmed, try to detect the **specific culprit allergen** because other vaccines could contain the same allergen (e.g. a patient with gelatin allergy may react to MMR, varicella or influenza vaccines); (ix) in most cases, patients with **suspected allergy to vaccines** can receive subsequent vaccinations safely; (x) some vaccines might be more important than others (e.g. measles is a potential fatal disease; influenza infection is usually less life-threatening).

- **How to confirm an IgE-mediated allergy to a vaccine?** (i) **Suggestive clinical history:** manifestations of mast cell degranulation within 4 hrs after immunization; (ii) **specific IgE detection by skin testing** (use the same vaccine brand that caused the reaction; falsely positive results may occur; “normal” delayed responses are common [most likely represent prior immunity]): SPT (usually with undiluted vaccine, consider using dilutions when there is a history of severe reaction), *intradermal test* with 1/100 diluted vaccine (nonirritating concentration).

- **How to confirm an IgE-mediated allergy to a vaccine component?** (i) **Suggestive clinical history:** signs of mast cell degranulation within 4 hrs after exposure to a vaccine component (e.g. egg, gelatin, yeast, latex, chicken, antibiotics); (ii) **specific IgE detection to the vaccine component:** SPT, *in vitro* testing; (iii) **allergen challenge**.

- **Gelatin:** (i) **stabilizer** (µg to mg quantities) of many vaccines (e.g. MMR, varicella, influenza, Japanese encephalitis); (ii) bovine or porcine origin (extensively cross-reactive); (iii) most frequent culprit allergen in vaccines.

- **How to diagnose gelatin allergy?** (i) **Clinical history:** ask for reactions after gelatin ingestion, a negative history does not exclude gelatin allergy; (ii) sIgE detection *in vitro*; (iii) SPT with an **office-made extract** (not approved by the FDA): dissolve 1 teaspoon of sugared gelatin powder (any flavor) in 5 mL of normal saline (unsugared gelatin tends to gel at room temperature).

- **How to approach a patient with IgE-mediated gelatin allergy?** Perform **skin testing with gelatin-containing vaccines** → (i) **negative results** → vaccinate the patient, observe 30 min afterward,
be prepared for anaphylaxis; (ii) positive results → consider alternative approach to vaccination or vaccination in graded doses (take informed consent, be prepared for anaphylaxis).

- **Egg protein (ovalbumin):** (i) very low amounts in influenza, MMR and rabies vaccines (usually no risk for egg-allergic patients); (ii) higher amounts in yellow fever vaccine (be careful with egg-allergic patients).

- **How to diagnose egg allergy?** (i) Clinical history: ask for reactions after egg ingestion; (ii) sIgE detection by skin and serum tests; (iii) oral food challenge.

- **How to approach a patient with IgE-mediated egg allergy who needs influenza vaccine?** (i) Administer an entire dose without previous skin tests, even in patients with anaphylaxis to egg; (ii) observe 30 min after vaccination; (iii) be prepared to manage anaphylaxis; (iv) injectable trivalent vaccine is preferred over nasal live attenuated vaccine because its safety in egg-allergic patients has been studied more extensively; (v) 2 egg-free influenza vaccines were recently approved for patients ≥18 yrs of age (Optaflu [Flucelvax] and Flublok).

- **How to approach a patient with IgE-mediated egg allergy who needs yellow fever vaccine?** Perform skin tests with the vaccine → (i) negative results → vaccinate the patient, observe 30 min afterward, be prepared for anaphylaxis; (ii) positive results → consider alternative approach to vaccination or vaccination in graded doses (take informed consent, be prepared for anaphylaxis).

- **Yellow fever vaccine** may contain chicken proteins → follow the same approach (see last paragraph) when vaccinating chicken-allergic patients.

- **Yeast protein** (Saccharomyces cerevisiae; common baker’s or brewer’s yeast): present in hepatitis B vaccines (up to 25 mg per dose) and quadrivalent human papillomavirus vaccine (<7 µg per dose); yeast allergy is rare.

- **How to diagnose yeast allergy?** (i) Clinical history: ask for reactions after yeast ingestion; (ii) sIgE detection by skin and serum tests to Saccharomyces cerevisiae.

- **How to approach a patient with IgE-mediated yeast allergy?** Perform skin testing with yeast-containing vaccines → (i) negative results → vaccinate the patient, observe 30 min afterward, be prepared for anaphylaxis; (ii) positive results → consider alternative approach to vaccination or vaccination in graded doses (take informed consent, be prepared for anaphylaxis).

- **Natural rubber latex:** present in the packaging of many vaccines (vial stopper, syringe plunger); very low risk of vaccine contamination with latex → minimal risk of allergic reactions in patients with IgE-mediated latex allergy.

- **How to diagnose latex allergy?** (i) Clinical history: ask for immediate reactions after exposure to latex; (ii) sIgE detection by skin and serum tests.

- **How to approach a patient with IgE-mediated latex allergy?** (i) Use a vaccine without latex stopper; (ii) if not possible, remove the stopper and take the vaccine directly from the vial; (iii) if latex packaging cannot be avoided (e.g. a prefilled syringe), vaccinate and observe the patient 30 min afterward, be prepared to treat anaphylaxis.

The purpose of this summary is exclusively educational, to provide practical updated knowledge for Allergy/Immunology Physicians. It does not intend to replace the clinical criteria of the physician.

- Pertussis vaccines (DTaP or Tdap) may contain trace amounts of casein → be careful when vaccinating egg-allergic children (the vast majority of patients with even severe milk allergy tolerate these vaccines well).

- Vaccines commonly contain traces of antimicrobial agents (e.g. neomycin, polymyxin B, streptomycin) → be careful when vaccinating patients with allergy to these compounds (not including contact dermatitis).

- Vaccines commonly contain preservatives (e.g. thimerosal, aluminum, phenoxyethanol), which may cause delayed-type hypersensitivity reactions (including contact dermatitis).

- This paper updates management of chronic pruritus associated with dermatologic diseases in pediatric patients, mainly atopic dermatitis (AD) and chronic spontaneous urticaria (CSU).

- Pruritus: usually unpleasant sensation that causes an intense desire to scratch; lifetime prevalence=22%; possible triggers: sweating, xerosis, temperature, stress, emotions, food, exercise, drugs, infections, tumor antigens, toxic substances, toxic metabolites; pathophysiology: production of pruritic substances (e.g. histamine, proteases, gastrin-releasing peptide [GRP], mu opioids, substance P, IL-31) by several types of cells (e.g. T cells, eosinophils, mast cells, keratinocytes, neurons) → activation of 'pruritic' nerve fibers.

- Chronic pruritus (>6 wks): (i) most bothersome symptom of many diseases; (ii) affects QoL; (iii) clinical history should include localization, severity, presence/absence of skin lesions, age of onset, duration, evolution over time, triggers, alleviating factors, associated symptoms; (iv) differential diagnosis should include systemic diseases (e.g. kidney disease, liver disease, cancer) and mental disorders; (v) treatment should be guideline-based (skin barrier restoration, antiinflammatory treatments, rapid-acting antipruritic therapies, psychological interventions, etc.); (vi) treatment should be as specific and safe as possible.

- Chronic pruritus can be classified in 3 groups: (i) pruritus on primarily inflamed skin (includes patients with underlying dermatologic diseases); (ii) pruritus on primarily non-inflamed skin; (iii) pruritus with chronic secondary scratch lesions, such as prurigo nodularis (groups ii and iii include patients with systemic diseases, pregnancy and psychiatric diseases).

- Proteinase-activated receptor (PAR-2) seems to mediate pruritus in AD (a histamine-independent pathway) → antihistamines are usually not effective.

- Methylprednisolone aceponate: 4th generation, non-halogenated corticosteroid; rapid and effective action in children/infants with AD; low incidence of topical and systemic side effects.

DEVELOPMENT OF FOOD ALLERGIES IN PATIENTS WITH GASTROESOPHAGEAL REFLUX DISEASE (GERD) TREATED WITH GASTRIC ACID SUPPRESSIVE MEDICATIONS (Trikha A,

- **Food allergy**: increased prevalence worldwide → which are the reasons?

- **Gastric acid digestion** ↓ the potential of food proteins to bind specific IgE.

- Authors performed a study to determine the association between use of **gastric acid suppressive (GAS) medications** (proton pump inhibitors or type 2 histamine receptor blockers) and occurrence of **food allergies in children with GERD** (0-18 yrs old) → children with GERD who received GAS (n=4724) had a greater risk of food allergy compared to children with GERD who were untreated (n=4724) and children without GERD who were untreated (n=4724).

- Author’s commentary: use of GAS medications in children may ↑ risk of food allergy (apparently independent of GERD diagnosis).

- **Hypothesis**: GAS medications → ↓ gastric acid → altered degradation of food allergens → ↑ food allergy risk.

EDITOR’S CHOICE (Pediatr Allergy Immunol 2013; 24: 511):

- Abrahamsson et al (Pediatr Allergy Immunol 2013; 24: 556–561) report the follow up of children who received probiotics (**Lactobacillus reuteri**) for eczema prevention (↓ eczema incidence at 2 yrs of age) → at 7-yr follow up there was **no protective effect on the risk of respiratory allergies**.

- **Increased intestinal permeability** may be an intrinsic trait in a subset of food allergic children. **Hypothesis**: ↑ intestinal permeability → ↑ entry of food allergens through gut epithelium → abnormal TH2 immune responses → ↑ risk of food allergy.

- **Maternal allergy**: risk factor for allergic disease in children.

- Infants of allergic mothers had higher levels of surface-bound IgE on cord blood basophils compared to infants of non-allergic mothers (no difference in cord blood serum IgE levels). Unclear if: (i) the basophil-bound IgE is maternal or fetal in origin; (ii) IgE loading of fetal basophils impacts allergy development.

- **Normal gut epithelium** → (i) absorption of small molecules; (ii) exclusion of larger molecules.

- Most common method to assess **intestinal permeability (IP)**: ingest lactulose (L) and mannitol (M) → measure urinary levels of L and M, calculate the L/M ratio (↑ IP → ↑ L/M ratio).

- Children with **food allergy** may have ↑ IP → which is first? (Allergic inflammation increases IP or IP predisposes to food allergy?).

- Authors evaluated 131 asymptomatic food (cow’s milk and/or egg) **allergic children** (3–17 yrs old) during an elimination diet → (i) 38% of children had ↑ IP; (ii) ↑ IP was associated with shorter stature.
• **Author's commentaries:** (i) ↑ IP may be an intrinsic trait in a subset of food allergic children; (ii) Hypothesis: ↑ intestinal permeability → ↑ entry of food allergens through gut epithelium → abnormal TH2 immune responses → ↑ risk of food allergy; (iii) larger studies are necessary to determine the role of impaired IP in food allergy.

 • Authors report the follow up of 232 children who received probiotics for eczema prevention (oral supplementation with *Lactobacillus reuteri* during the last month of gestation and through the 1st year of life reduced IgE-associated eczema incidence at 2 yrs of age) → (i) at 7 yrs of age there was no protective effect on the risk of respiratory allergies (asthma and allergic rhinoconjunctivitis); (ii) at 7 yrs of age there were no long-term side effects.

 • **Author's commentaries:** (i) the beneficial effect of *L. reuteri* on sensitization and IgE-associated eczema at 2 yrs of age did not lead to a lower prevalence of respiratory allergic disease at 7 yrs of age; (ii) the effect of *L. reuteri* on the immune system seems to be transient.

• **ORAL IMMUNOTHERAPY AND TOLERANCE INDUCTION IN CHILDHOOD** (Tang MLK, Martino DJ. Pediatr Allergy Immunol 2013; 24: 512–520):

 • **Food allergy:** increasing prevalence worldwide; impact: significant morbidity, ↓ QoL, mortality risk; conventional treatment: allergen avoidance (does not prevent accidental exposure), epinephrine autoinjectors; optimal treatment: restore tolerance to allergens (immunotherapy).

 • **Desensitization:** no reactivity to a food while ingesting regular doses; mediated by lowering the reactivity of effector cells (mast cells, basophils); ingestion of the food after 2-4 wks of discontinuation results in an acute allergic reaction.

 • **Tolerance:** no reactivity to a food after a large period of discontinuation (months or yrs); mediated by reprogramming immune response (development of Tregs, allergen-specific anergy and/or clonal deletion).

 • **Oral tolerance:** antigen-specific tolerance induced in gut-associated lymphoid tissues (GALT).

 • **Factors associated to food allergy:** (i) ↑ intestinal inflammation; (ii) ↓ gut epithelial barrier; (iii) use of gastric acid suppressive drugs; (iv) ↑ proinflammatory microbiota (e.g. *Clostridium, Staphylococci*); (v) ↑ TH2 responses (including IgE production).

 • **Factors that promote oral tolerance:** (i) ↑ tolerogenic microbiota (*Lactobacillus, Bifidobacterium*); (ii) ↑ tolerogenic dendritic cells (CD103+ DCs migrate to mesenteric lymph nodes, CX3CR1+ DCs remain within the gut); (iii) ↑ T regulatory responses (CD4+CD25+ iTregs, Th3 cells, Tr1 cells, CD8+ Tregs); (iv) ↑ TH1 responses; (v) ↑ tolerogenic molecules (retinoic acid, TGF-β, TSLP, indoleamine-2,3-dioxygenase, IL-10, IgG4, IgA).

 • **Main limitations of oral immunotherapy (OIT):** (i) lack of evidence of long-lasting efficacy (RCT with cow’s milk, egg and peanut OIT have reported desensitization in 33–90% of subjects; however, ability for OIT to induce long-lasting tolerance remains uncertain); (ii) allergic reactions during OIT, including reactions to previously tolerated doses (common triggers: concurrent
infection, physical activity within 2 h of a dose, taking a dose on an empty stomach, poorly controlled asthma, pollen season, menses).

- **How to increase efficacy and safety of OIT?** (i) adding omalizumab (anti-IgE mAb); (ii) using modified allergens (baked food, recombinant allergens, peptides), (iii) adding immune response modifiers (monophosphoryl lipid A [TLR-4 agonist], CPG containing DNA [TLR-9 agonist], probiotics); (iv) personalized OIT schemes.