Dietary Factors, Obesity and Pediatric Asthma

Paul A. Greenberger, M.D., FAAAAAI, FACAAI
0800-0825
Dietary Factors and Weight Management

Paul A. Greenberger, M.D., FAAAAI, FACAAI

- Disclosures
 - Mylan (Dey) advisory committee
 - AAAAI past president
 - Misc Legal (APBA, immunology, drug allergy)
Objectives

- To review how to differentiate between lack of conditioning in obese children from loss of asthma control
- To consider when weight gain in childhood is most likely to contribute to asthma expression
- To present information regarding what dietary factors may be productive in reducing asthma induction and severity
Objectives

- To review how to differentiate between lack of conditioning in obese children from loss of asthma control.
- To consider when weight gain in childhood is most likely to contribute to asthma expression.
- To present information regarding what dietary factors may be productive in reducing asthma induction and severity.
To review how to differentiate between lack of conditioning in obese children from loss of asthma control

- Control consists of 2 domains
 \[\text{___________________} \quad \text{and} \quad \text{___________________} \]

NAEPP, NHLBI 2007
To review how to differentiate between lack of conditioning in obese children from loss of asthma control

- Control consists of 2 domains...**Impairment** and **Risk**
Asthma Severity/Control

- **CURRENT IMPAIRMENT**
 - FREQUENCY/INTENSITY OF SYMPTOMS
 - “BREATHELESSNESS DURING THE DAY/NIGHT OR AFTER EXERCISE”
 - SABA ≤ 2 X/WEEK
 - FUNCTIONAL LIMITATIONS
Asthma Severity/Control

- Future Risk
 - Likelihood of Exacerbations
 - Loss of Lung Function/Lack of Lung Growth
 - Minimal or No Adverse Effects of Meds
Despite Recommendations....

- More than 10% of children and adolescents are over their recommended weight
- Cough, Breathlessness with Exercise, and Wheezing in obese children and adolescents may lead to OVERDIAGNOSIS of asthma by physicians
Objectives

- To review how to differentiate between lack of conditioning in obese children from loss of asthma control
- To consider when weight gain in childhood is most likely to contribute to asthma expression
- To present information regarding what dietary factors may be productive in reducing asthma induction and severity
Conditioning is a Function of

- **Increase in ventilation** during exercise (respiratory rate and flow rate)
- **Increase in cardiac output** (V/Q homogeneous or low and high areas of V/Q from acute asthma)
- **Neuroendocrine adaptation** (peak plasma concentration of epinephrine)
- **Metabolic adaptation** (aerobic and anaerobic capacity) (both can be decreased in asthma if FEV$_1$ is reduced)
- **Respiratory function** (airways obstruction)
Regarding Asthma, does the child have:

- Lack of ventilatory reserve (bronchoconstriction, chest wall deformity)
- Muscle deconditioning
- Cardiac limitation
- Uncontrolled Allergic Rhinitis or Rhinosinusitis?
- Concomitant chronic disease (CF?)
- Poor self esteem
- Lack of confidence in asthma therapy
- Asthma
12 year old with persistent mild-moderate asthma since age 2 years; Allergic Rhinitis; Overweight

Response to Therapy for Exacerbations

- Responds quickly
- Responds to combination ICS/LABA; occasional prednisone
- Slow to respond
12 year old with persistent mild-moderate asthma since age 2 years; overweight

Response to Therapy for Exacerbations

- Responds quickly
- Responds to combination ICS/LABA; occasional prednisone
- Slow to respond
Slow or Sub-Optimal Responses

- Non-adherence
- Overweight reduces responses to medications (doubtful impairment in persistent mild, moderate asthma (JACI 2009;123:1328-34)
- Un-recognized concurrent VCD
- Hyper-vigilant re symptom recognition
- Co-morbidities relevant
- De-conditioned
- Exercise induced hypocarbia
Co-Morbidities/Issues

- GERD, NERD, LPR (atypical reflux)
- Sleep Apnea
- Allergens at home (pets, dust mites, fungi, pests)
- Allergic rhinitis and/or CRS
- Adherence, self-efficacy (recognition of symptoms or change in PEF early)
- Expectations (patient and/or family)
- Social (overweight friends, family)
- Smoking
- Low/insufficient Vitamin D ≤ 30 ng/mL
Exercise Induced Syndromes..

- Asthma
- Bronchoconstriction (no underlying persistent asthma)
- Rhinitis
Exercise Induced Bronchospasm
Which Therapies Modify (reduce) the Extent of EIB/EIA

<table>
<thead>
<tr>
<th>Albuterol, terbutaline</th>
<th>______________</th>
</tr>
</thead>
<tbody>
<tr>
<td>______________</td>
<td>______________</td>
</tr>
<tr>
<td>______________</td>
<td>______________</td>
</tr>
<tr>
<td>______________</td>
<td>______________</td>
</tr>
<tr>
<td>______________</td>
<td>______________</td>
</tr>
</tbody>
</table>
Which Therapies Modify (reduce) the Extent of EIB/EIA

- Albuterol, terbutaline
- LABA (rapid onset)
- Cromolyn
- Nedocromil
- Leukotriene Receptor Antagonist
- Leukotriene Synthesis Modifier

- Inhaled corticosteroids (not immediately effective)
- Theophylline
- Ca Channel Blockers
- *Nasal breathing*
- *Warm, moist air*
Is There Real Disease Here in an Obese Child/Adolescent with Shortness of Breath and Wheezing?

- **Coughing with deep inspiration** (in non-asthma patients, at total lung capacity, resistance decreases; in asthma, it can go up and cause coughing)

- **Abnormal expiratory flow rates and reversibility** or truncated inspiratory loop on a flow-volume loop

- What has been the response to medications?... *worsening if taken off* of or undertreated with medications?

- Poor effort on spirometry?
Exercise Induced Hyperventilation (Ann Allergy Asthma Immunol 1999;82:574-78)
Exercise Induced Hyperventilation (Hypocapnia)

- Reassurance of child or adolescent
- Try to suppress hyperventilation
- Avoid excessive pharmacotherapy
What About Excluding Asthma?

- Demonstrate overdiagnosis or remission
- Negative bronchial provocation challenge with mannitol.. (recently available with high specificity— if no disease, test is negative)
- Examine if symptomatic
- Identify other explanations
- Keep an open mind
Objectives

- To review how to differentiate between lack of conditioning in obese children from loss of asthma control
- To consider when weight gain in childhood is most likely to contribute to asthma expression
- To present information regarding what dietary factors may be productive in reducing asthma induction and severity
Obesity as a Socially Infectious Disease?

- 17% of children, adolescents ages 2-19 years are obese in the U.S.

BMI > 30 kg/m²
Which Children?

- BMI ≥ 40 kg/m²
- *Overweight* if there is inadequate control of asthma or prevention of EIB
- *At risk* infants, toddlers, children, adolescents
To present information regarding what dietary factors may be productive in reducing asthma induction and severity

- Pre-Natal.....avoid excessive weight gain
- Pre-Natal.....pro and pre-biotics (modest-to keep weight down)
- Age up to 2 yrs.....avoid overfeeding and rapid growth (top 20th percentile)
- Mediterranean diet
- Sufficient sleep (when using diet)
- Vitamin C, apples, pears?
Associations of maternal and children adherence to a Mediterranean diet with wheeze and atopy in Menorcan children at age 6.5 years.

Is Having Asthma A Risk Factor for Obesity?

- Yes
- No
The Relationship Between Asthma and Obesity in Urban Minority Children and Adolescents

- Asthma is a risk factor for obesity in children ages 4-10.5 yrs and 11-16 yrs.
- The severity of asthma was not associated with obesity.
- Asthma (Symptoms and MD confirmed wheezing).
- Percent overweight was reported as a continuous variable so that overweight was >50th percentile for BMI.
The Relationship Between Asthma and Obesity in Urban Minority Children and Adolescents

Table 2. Percentage of Subjects Who Were Obese (≥85th BMI Percentile) and Very Obese (≥95th BMI Percentile) and Their Percent Overweight in Relationship to Asthma Status

<table>
<thead>
<tr>
<th></th>
<th>Nonobese</th>
<th>Obese</th>
<th>Nonobese</th>
<th>Obese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obese (≥85th BMI Percentile)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asthmatic</td>
<td>46 (54.1)</td>
<td>39 (45.9)</td>
<td>2.7 ± 8.5</td>
<td>45.8 ± 25.6</td>
</tr>
<tr>
<td>Nonasthmatic</td>
<td>60 (69.8)</td>
<td>26 (30.2)</td>
<td>2.8 ± 10.6</td>
<td>33.4 ± 18.9</td>
</tr>
<tr>
<td>Obese (≥95th BMI Percentile)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asthmatic</td>
<td>59 (69.4)</td>
<td>26 (30.6)</td>
<td>7.1 ± 11.6</td>
<td>57.4 ± 18.9</td>
</tr>
<tr>
<td>Nonasthmatic</td>
<td>76 (88.4)</td>
<td>10 (11.6)</td>
<td>6.8 ± 12.9</td>
<td>51.9 ± 15.6</td>
</tr>
</tbody>
</table>

*BMI indicates body mass index (weight in kilograms divided by the square of the height in meters). χ² Analyses for obese and very obese children are χ²₁ = 9.25, P = .002, and χ²₁ = 4.44, P = .04, respectively.
Can A Child or Adolescent with Asthma Be Fit (Conditioned) and Overweight?

- Yes
- No
Observations re Obesity

- With increasing bronchoconstriction, there is greater mechanical disadvantage eg higher FRC and lower Inspiratory Capacity which causes GREATER DYSPNEA.
- During bronchoconstriction, inspiratory muscles apply radial traction on the airways to support caliber (tidal volume and ventilation).
Observations re Obesity

- Severity of dyspnea is perceived to be greater in obese patients with asthma for the same level of bronchoconstriction.
Advice/Conclusions

- Overweight status is an *immediate alert* for attention to weight control or weight loss/physical conditioning and asthma control.
- Overweight status has modest negative effects on responses to monotherapy with ICS, not to montelukast or ICS/LABA but in studies is not a major contributor to lack of asthma control.
- Verify improvement with interventions.
Summary

“The mind can absorb only what the seat can endure”
35 y/o (BMI 42)-non-asthma
Preserved Flow Rates but Reduced TLC, FRC and VC
Loss of Protective Effect of Deep (Bronchodilating) Inspiration with Obesity during Methacholine Challenge (JACI 2005;115:1100-5)
Response to Bronchoprovocation

AJRCCM 2008;177:970-5

- Perception of dyspnea and influence of obesity
- 30 Female Adults with asthma
- Methacholine challenge
- Little change in TLC; increases in Residual Volume similar despite differences in BMI
- FEV$_1$ decreased 28% as expected
- Numerical but no significant differences in VAS for dyspnea; no relationship with BORG score......but.........
Do Obese Patients with Asthma Sense Airway Closure Differently Pre and Post Methacholine?

Changes in FRC

Percentage Predicted of FRC

BMI Tertile Group

- Tertile 1
- Tertile 2
- Tertile 3

BMI 20-24.9
BMI 25-30.9
BMI 31-45