Obstructive Sleep Apnea and Sleep Disorders in All Age Groups

Treatment

W. McD. Anderson, M.D.
Medical Director, Tampa General Hospital
Sleep Center
Professor of Medicine, USF College of Medicine
Program Director, USF Sleep Medicine
Obstructive Sleep Apnea and Sleep Disorders in All Age Groups

Treatment

- Allergic rhinitis and sinusitis
- Asthma
- Obstructive Sleep Apnea
Allergies
Allergies

CT-SCAN OF SINUSES

M - maxillary sinus, + thickening of the maxillary sinus (4-6 mm), E - ethmoid sinuses, P - polyp, * - middle meatus
ALLERGIC RHINITIS THERAPY

• Avoidance
• Pharmaceutical therapeutics
• Immunomodulation
 • Allergy shots/immunotherapy/vaccination
 • SCIT and SLIT
 • Monoclonal antibodies
 • Omalizumab
Prevalence of Sleep Complaints and Sleep Disorders in Patients with Allergic Rhinitis (Ages 18-50 years)

<table>
<thead>
<tr>
<th>Complaint/Disorder</th>
<th>Control Group % N=502</th>
<th>Mild AR % N=140</th>
<th>Mod-Sev AR % N=451</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep Complaint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difficulty falling asleep</td>
<td>18</td>
<td>18</td>
<td>50*</td>
</tr>
<tr>
<td>Nocturnal awakening</td>
<td>21</td>
<td>15</td>
<td>52*</td>
</tr>
<tr>
<td>Early awakening</td>
<td>13</td>
<td>15</td>
<td>33*</td>
</tr>
<tr>
<td>Feeling lack of sleep</td>
<td>25</td>
<td>48</td>
<td>80*</td>
</tr>
<tr>
<td>Snoring</td>
<td>27</td>
<td>31</td>
<td>40*</td>
</tr>
<tr>
<td>ESS score >10</td>
<td>17</td>
<td>11</td>
<td>25*</td>
</tr>
</tbody>
</table>

*p<0.05 vs. control group

Arch Intern Med 2006; 166: 1744-1748
Prevalence of Sleep Complaints and Sleep Disorders in Patients with Allergic Rhinitis (Ages 18-50 years)

<table>
<thead>
<tr>
<th>Complaint/Disorder</th>
<th>Control Group % N=502</th>
<th>Mild AR % N=140</th>
<th>Mod-Sev AR % N=451</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep Disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insomnia</td>
<td>16</td>
<td>15</td>
<td>42*</td>
</tr>
<tr>
<td>Severe insomnia</td>
<td>10</td>
<td>11</td>
<td>27*</td>
</tr>
<tr>
<td>Sleep apnea</td>
<td>0.5</td>
<td>2</td>
<td>3*</td>
</tr>
<tr>
<td>Hypersomnia</td>
<td>24</td>
<td>20</td>
<td>35*</td>
</tr>
<tr>
<td>Regular use of sedatives</td>
<td>3</td>
<td>4</td>
<td>11*</td>
</tr>
</tbody>
</table>

*p<0.05 vs. control group

Arch Intern Med 2006; 166: 1744-1748
Effect of Allergic Rhinitis and Antihistamine Use on Learning in Children

Ages 10-12 Years

* p=0.002 vs healthy

Composite learning score

Healthy (n = 21)
Loratadine
Placebo
Diphenhydramine

Effects of Loratadine & Montelukast on Nighttime Symptoms

Nighttime Symptoms Score
(Mean Baseline = 1.46) *p<0.001

Am J Rhinol 2005; 19: 591-8
Olopatadine Nasal Spray: Significantly Improved QoL Variables

Intranasal Corticosteroid Improves Nasal Congestion and Sleep Quality (N=20 crossover)

- **Stuffy Nose**: Flunisolide (P=0.009)
- **Sleep Quality**: Flunisolide (P=0.01)
- **Daytime Sleepiness**: Flunisolide (P=0.08)

J Allergy Clin Immunol 2004; 114: S146-53
Mometasone Nasal Spray in PAR: Change in Epworth Sleepiness Score (ESS) Scores

Change in ESS Scores From Baseline

<table>
<thead>
<tr>
<th></th>
<th>MFNS 200 µg od (n=20)</th>
<th>Placebo (n=9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>12.50</td>
<td>13.33</td>
</tr>
<tr>
<td>Change in ESS score (points)</td>
<td>+0.45</td>
<td>-1.90</td>
</tr>
</tbody>
</table>

*P<0.05 vs placebo.

Meltzer EO. Ann Allergy Asthma Immunol submitted
Asthma
Diurnal Variation In Peak Expiratory Flow

J Respir Dis 11:138, 1990
Nocturnal Asthma

Salmeterol

Lockey RF, et al CHEST 115:666, 1999
Nocturnal Asthma
Salmeterol and QOL

Lockey RF, et al CHEST 115:666, 1999
Nocturnal Asthma
Salmeterol

Lockey RF, et al CHEST 115:666, 1999
Nocturnal Asthma & Theophylline
Uniphyl 24 hr. vs. Theo-Dur 12hr.

Nocturnal Asthma
Montelukast & Beclomethasone

Malmstrom K et al. Ann Intern Med 1999;130:487-495
©1999 by American College of Physicians
Nocturnal Asthma

Tiotropium

Peters SP, et al. NEJM 363:1715, 2010
Nocturnal Asthma

OSA & CPAP

Nasal CPAP improves PEFR in nocturnal asthma

Obstructive Sleep Apnea
Behavioral Treatment

- Weight loss
- Avoidance of alcohol and sedatives
- Avoidance of sleep deprivation
- Nocturnal bed positioning

Strollo NEJM 334: 102, 1996
Obstructive Sleep Apnea
Adenotonsillectomy
Obstructive Sleep Apnea in Children

Adenotonsillectomy

Obstructive Sleep Apnea
Weight Loss

Nolan, J. Tampa Trib 12/28
OSA and Weight Loss
Upper Airway Volumetric MRI

Welch Sleep 25:536, 2002
Obstructive Sleep Apnea
Medical Treatment

• First-line therapy
 • Positive pressure with a mask

• Second-line therapy
 • Oral appliance

• Other
 • Fluoxetine or protriptyline
 • Thyroid hormone (in hypothyroid patients)
 • Nocturnal oxygen

Strollo NEJM 334: 102, 1996
Benefits of Nasal CPAP for OSA

Randomized placebo-controlled trials

- Decrease somnolence
- Decrease auto accidents
- Improve quality of life
- Improve mood and alertness

Cohort studies

- Improved pulm. hemodynamics and mortality

Positive Airway Pressure

PAP

• CPAP

 Continuous Positive Airway Pressure
 • BiPAP

 BiLevel Positive Airway Pressure
 • AutoPAP/SmartPAP

 Automatic/Smart/Self-Adjusting Positive Airway Pressure
Modes of PAP Therapy

<table>
<thead>
<tr>
<th>Mode</th>
<th>Diagram</th>
<th>Pressure Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual CPAP Mode</td>
<td></td>
<td>0 pressure</td>
</tr>
<tr>
<td>Bi-level Mode</td>
<td></td>
<td>0 pressure</td>
</tr>
<tr>
<td>Auto-CPAP Mode</td>
<td></td>
<td>0 pressure</td>
</tr>
</tbody>
</table>
Positive Pressure Therapy Interfaces

Nasal Interface
Positive Pressure Therapy Interfaces

Nasal Pillows
Positive Pressure Therapy Interfaces

Full Face Masks
PAP Humidification

OSA Intervention - Mechanical

- Heated
- Combination
- Passover
OSA Treatment
Mandibular Advancement Device

- Ten nonapneic adults
- 4 mandibular positions
- Most retruded, 33% - 67% and max. protrusion
- The AP width of the velopharynx increased

Tsuiki Sleep 24:554, 2001
OSA Treatment
Mandibular Advancement Device

- KlearWay device
- Enlarges velopharynx
- Hyoid bone and third cervical vertebra moved forward
OSA Treatment
Mandibular Advancement Device
Obstructive Sleep Apnea
Surgical Treatment

- Upper-airway bypass
 - Tracheostomy
- Upper-airway reconstruction
 - Uvulopalatopharyngoplasty
 - Genioglossal advancement
 - Maxillomandibular advancement

Strollo NEJM 334: 102 1996
OSA Treatment

Uvulopalatopharyngoplasty

- UPPP at 29 year review
- 40% success rate
- UPPP is probably overused as an isolated procedure

Sher Sleep 19:160, 1996
OSA Treatment
Genioglossal Advancement

Sher Sleep 19:160,1996
OSA Treatment

Maxillomandibular Advancement

Sher Sleep 19:160,1996
OSA Treatment

Maxillomandibular Advancement

<table>
<thead>
<tr>
<th>Date</th>
<th>N</th>
<th>% Respond</th>
<th>Date</th>
<th>N</th>
<th>% Respond</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986 Riley</td>
<td>5</td>
<td>AHI 73 to 20</td>
<td>1989 Riley</td>
<td>25</td>
<td>>90</td>
</tr>
<tr>
<td>1989 Riley</td>
<td>55</td>
<td>67</td>
<td>1989 Waite</td>
<td>23</td>
<td>65</td>
</tr>
<tr>
<td>1993 Riley</td>
<td>239</td>
<td>61</td>
<td>1993 Riley</td>
<td>91</td>
<td>>90</td>
</tr>
<tr>
<td>1994 Johnson</td>
<td>9</td>
<td>69</td>
<td>1997 Hochban</td>
<td>38</td>
<td>>95</td>
</tr>
<tr>
<td>1996 Ramirez</td>
<td>12</td>
<td>53</td>
<td>1999 Prinsell</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>1998 Yoa</td>
<td>23</td>
<td>68</td>
<td>2002 Bettega</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>2000 Wagner</td>
<td>21</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001 Bettega</td>
<td>44</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002 Vilaseca</td>
<td>20</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003 Neruntarat</td>
<td>31</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>